U. SCHMUCKER

Elektromagnetische Übertragungsfunktionen für tagesperiodische Variationen

1. Einleitung

Variationen des erdmagnetischen Feldes, die sich Tag für Tag an einem festen Ort in ähnlicher Form wiederholen, heißen S-Variationen, an ruhigen Tagen Sq-Variationen. S bedeutet solar, q "quiet". Damit wird auf ihren Ursprung verwiesen: die Wellenstrahlung der Sonne. Ihre äußeren Quellen sind ausgedehnte ionosphärische Stromwirbel, die sich auf der Tagseite scheinbar mit der Sonne über die Erdoberfläche von Ost nach West bewegen. In Wirklichkeit dreht sich die Erde unter räumlich durch den Sonnenstand fixierten Quellen hinweg. Doch für Induktionsrechnungen sind beide Betrachtungsweisen gleichwertig. Wichtig für das folgende ist nur, daß S-Variationen fast reine Funktionen der Ortszeit T = $t+\lambda$ sind, wenn t die Weltzeit und λ die geographische Länge des Beobachtungsortes bezeichnen.

Ist $S(T, \theta, \lambda)$ die S-Variation irgendeiner Feldkomponente zum Zeitpunkt T an einem Ort der Länge λ und der geographischen Poldistanz θ (= 90[°] - geogr. Breite) und werden die Zeiten t und T in Winkelmaß gemessen (2 π = 1 Sonnentag), so lautet die Fourier-Darstellung von S-Variationen <u>in Ortszeit</u> mit $\omega_m = 2\pi m/Tag$

$$S(T,\theta,\lambda) = \tilde{S}_{0}(\theta,\lambda) + \sum_{m=1}^{M} \tilde{S}(\omega_{m},\theta,\lambda) e^{imT} , \qquad (1)$$

wobei der Realteil der rechten Seite zu nehmen ist: $\operatorname{Re}\{\tilde{S} e^{imT}\}$ = $\operatorname{Re}\{\tilde{S}\}\cos mT - \operatorname{Im}\{\tilde{S}\}\sin mT$. Die komplexe Fourier-Amplitude \tilde{S} ist erfahrungsgemäß im wesentlichen eine Funktion von θ und nur geringfügig von λ abhängig. Das Absolutglied \tilde{S}_{0} ist zwar für die richtige globale Darstellung von S wichtig, da die Abweichungen vom Bezugsniveau um Mitternacht im Tagesmittel keineswegs verschwinden. Doch die fehlende Zeitabhängigkeit macht eine Berücksichtigung für Induktionsrechnungen überflüssig. Im folgenden wird daher \tilde{S}_{0} weggelassen, und da die Grundschwingung mit $\omega_{1} = 2\pi/Tag$ und die Oberschwingungen m = 2, 3, 4 den zeitlichen Verlauf von S-Variationen genügend genau beschreiben, wird M = 4 gesetzt. Diesem Periodenbereich von 24 bis 6 Stunden entsprechen Eindringtiefen in den Erdmantel zwischen 300 und 700 km. Dies ist zumindest das Ergebnis von Analysen <u>magnetischer</u> Beobachtungen auf Kontinenten. Die Eindringtiefen erweisen sich als ziemlich einheitlich. Induktionsanomalien sind zwar bekannt (etwa in Norddeutschland und an Küsten), doch sie sind viel weniger ausgeprägt als bei schnellen Variationen. Tellurische S-Variationen werden beobachtet, doch ist ihre Analyse zum Zweck einer <u>magnetotellurischen</u> Bestimmung der Eindringtiefe eine Aufgabe für sich. Zum einen kann die Impedanz nicht für die S-Harmonischen selbst, sondern nur für das spektrale Kontinuum zwischen ihnen tensoriell bestimmt werden. Zum zweiten sind wegen der genannten großen Eindringtiefen ausgeprägte Anomalien (oder "Verzerrungen") des tellurischen Feldes fast unvermeidbar und müssen in Korrekturen berücksichtigt werden.

Der folgende Beitrag behandelt ausschließlich aus rein magnetischen Beobachtungen abgeleitete Übertragungsfunktionen für die Induktion durch S-Variationen und ihre Aussagen zur Leitfähigkeit in großen Tiefen. Sie werden in verschiedener Form in Abschnitt 3 für ein gemäß Abschnitt 2 nach Kugelfunktionen entwickeltes Oberflächenfeld eingeführt. Abschnitt 4 erläutert Methoden ihrer Bestimmung, Abschnitt 5 faßt das Ergebnis solcher Bestimmungen zusammen. Ihre Darstellung durch scheinbare Widerstände wird in Abschnitt 6 ergänzt durch solche, die sich aus der Analyse von Dst-Variationen und DP-Variationen ergeben, woraus sich Widerstandsmodelle für den gesamten Erdmantel bis etwa 1000 km Tiefe ableiten.

2. Kugelfunktionsentwicklung von S-Variationen in Ortszeit

Es seien (r, θ, λ) geozentrische Koordinaten, $r = R_E$ der Erdradius. Im quellenfreien Raum, der die Erdoberfläche einschließt, ist das Magnetfeld der S-Variationen ein Potentialfeld: <u>B</u> = - grad V (<u>B</u>: magnetische Kraftflußdichte). Das Potential V besteht aus den Anteilen E und I, die sich auf das Oberflächenfeld äußeren(E) und inneren (I) Ursprungs beziehen. Zur Entwicklung von V = E + I nach Kugelfunktionen wird die übliche

- 12 -

Reihenfolge der Summationen über den Grad n und die Ordnung L nach dem folgenden Schema vertauscht:

Für einen Zeitpunkt t in Weltzeit lautet dann die Entwicklung des äußeren Potentialanteils in komplexer Schreibweise

$$E(t,r,\theta,\lambda) = \sum_{m=1}^{4} \sum_{\ell=-M}^{M} \sum_{n=e}^{\ell} \varepsilon_{n}^{\ell}(\omega_{m}) \cdot (\frac{r}{R_{E}})^{n} P_{n}^{\ell}(\cos\theta) e^{i(mt+\ell\lambda)}$$
(2)

wobei wiederum der Realteil der rechten Seite zu nehmen ist. Diese Darstellung wird durch eine Transformation auf Ortszeit T = t+ λ auf eine S-Variationen angepaßte Form gebracht. Schreibt man die zweite Summe gliedweise für ℓ = m, ℓ = m+1, ℓ = m-1 bis ℓ =+M und ℓ =-M, so wird die Potentialentwicklung in Ortszeit für den äußeren Anteil

$$E(T, r, h, \lambda) = \mathcal{R}_{E} \sum_{m=n}^{4} \left\{ \sum_{n=m}^{M} \mathcal{E}_{n}^{m} (\omega_{m}) \left(\frac{r}{\mathcal{R}_{E}}\right)^{n} \mathcal{P}_{n}^{m} (\cos \theta) \right\}$$
$$+ e^{i\lambda} \sum_{n=m+n}^{M} \mathcal{E}_{n}^{m+n} (\omega_{m}) \left(\frac{r}{\mathcal{R}_{E}}\right)^{n} \mathcal{P}_{n}^{m+n} (\cos \theta)$$

$$+ e^{-i\lambda} \sum_{m=m-1}^{m} e_{m}^{m-1} (\omega_{m}) (\frac{r}{R_{E}})^{m} \mathcal{P}_{m}^{m-1} (\omega_{e} r) + \cdots \} e^{imT}$$
(3)

und für den inneren Anteil

$$\overline{I}(T, r, \delta, \lambda) = R_E \sum_{m=1}^{4} \left\{ \sum_{n=m}^{m} L_n^m(\omega_m) \left(\frac{R_E}{r}\right)^{n+1} \mathcal{P}_m^m(\cos^q) + e^{i\lambda} \sum_{n=m+n}^{m} L_n^m(\omega_m) \left(\frac{R_E}{r}\right)^{n+1} \mathcal{P}_m^{m\tau'}(\cos^q) + \cdots \right\} e^{imT}.$$
(4)

Die transformierte Darstellung besitzt den entscheidenden Vorteil, daß ihre ersten, von λ unabhängigen Terme den dominierenden, nur von Ortszeit abhängigen Anteil enthalten. Die nächstfolgenden Summen ergeben Feldanteile, die mit $\exp(\pm i\lambda)$ längs eines Breitenkreises moduliert sind. Dies trägt dem Umstand Rechnung, daß S-Variationen in komplizierter Weise von geographischen und geomagnetischen Koordinaten abhängen, woraus sich eine gewisse Längenabhängigkeit von S-Variationen in Ortszeit ergibt.

Die Entwicklungskoeffizienten ε_n^{ℓ} und c_n^{ℓ} des äußeren und inneren Anteils lassen sich in bekannter Weise aus der Kugelfunktionsentwicklung der Fourieramplituden der horizontalen und vertikalen S-Variationen ableiten. Die erste grundlegende Analyse dieser Art wurde von Chapman (1919) durchgeführt. Er betrachtete S-Variationen als reine Funktionen der Ortszeit. Er fand, daß während der äquinoxialen Monate (März-April, September-Oktober), wenn die Quellen symmetrisch zum Äquator sind, jeweils der zweite Koeffizient mit n = m+1 zur Darstellung der Breitenabhängigkeit von S-Variationen genügt. Benkova (1940) nahm weitere Terme hinzu und bemerkte, daß die Ortszeit-Koeffizienten ε_{m+3}^{m} den zweitgrößten Beitrag liefern. Winch (1980) hat dieses Ergebnis bestätigt, zumindest für m = 1 und 2, und aus der Sq-Theorie erklärt.

In den neuen umfassenden Analysen durch Malin (1973) und Winch (1980) wurden die S-Variationen in Weltzeit entwickelt mit dem Nachteil, daß die von der Ortszeit abhängigen Feldanteile für jede Frequenz auf zwei Koeffizienten aufgeteilt wurden, nämlich auf die mit $P_n^m e^{im\lambda}$ und $P_n^m e^{-im\lambda}$. In der zur Anwendung des Z:Y Verfahrens notwendigen Entwicklung der Horizontalkomponenten wurde die erste Summierung maximal bis M = m+3 ausgeführt und die beiden nächsten bis maximal M = m+2, so daß maximal 10 Koeffizienten für jede Frequenz bestimmt werden müssen.

- 14 -

3. Übertragungsfunktionen für S-Variationen

Sie beschreiben als Funktionen der Frequenz ω solche linearen Zusammenhänge zwischen Feldkomponenten und Potentialanteilen von S-Variationen, die durch die Induktion und damit durch die Leitfähigkeit im Erdkörper bestimmt werden. Für S-Variationen beziehen sie sich auf die diskreten Frequenzen ω_m in (1).

Um Übertragungsfunktionen im Einklang mit den Maxwellschen Gleichungen einführen zu können, muß für ein festes ω das Potential des äußeren induzierenden Feldes eine definierte räumliche Struktur besitzen, im einfachsten Fall durch eine einzige elementare Kugelflächenfunktion

$$Y_{n}^{\ell}(\omega_{m}) = \varepsilon_{n}^{\ell}(\omega_{m}) P_{n}^{\ell}(\cos\theta) e^{i\ell\lambda}$$
(5)

auf der Erdoberfläche dargestellt werden. Das zugehörige, auf Induktion beruhende innere-Potential setzt sich aus vielen solchen Elementarpotentialen zusammen, deren Koeffizienten jeweils für sich in einem linearen Zusammenhang zu dem Koeffizienten $\varepsilon_n^{\ell,m}$ des äußeren Elementarpotentials stehen. Die Bestimmung der zugehörigen Übertragungsfunktionen aus Beobachtungen ist praktisch unmöglich, da sich die inneren Beiträge von mehreren äußeren Elementarpotentialen Überlagern. Folgende Einschränkung hat zu brauchbaren Ergebnissen geführt:

Es sei angenommen, daß es ein mittleres inneres Feld gibt, das zu einem lateral-homogenen Erdmodell gehört. Dann wird durch ein äußeres Elementarpotential jeweils nur ein einziges inneres Elementarpotential induziert mit der gleichen Kugelflächenfunktion. Der lineare Zusammenhang beschränkt sich damit auf die beiden Potentialkoeffizienten ε_n^{l} und ι_n^{l} , und zwar unabhängig von der Ordnung l. Dies ergibt sich aus der Forderung, daß für eine radialsymmetrische Erde ihre Beziehung zueinander nicht von einer speziellen Wahl der Koordinaten abhängen darf. Die Definitionsgleichung der Übertragungsfunktion Q zwischen dem inneren und äußeren Potentialkoeffizienten für ein radialsymmetrisches Erdmodell, eine vorgegebene Frequenz, einen Grad n und alle Ordnungen $l = 0, 1, 2, \ldots$ n der Kugelfunktionen $P_n^{l}(\cos\theta)$ exp(il λ) ist

$$\iota_{n}^{\ell}(\omega_{m}) = Q_{n}(\omega_{m}) \cdot \varepsilon_{n}^{\ell}(\omega_{m}) .$$
(6)

- 16 -

Im Falle eines aus vielen Elementarpotentialen zusammengesetzten Oberflächenfeldes setzt die Bestimmung der $Q_n(\omega_m)$ voraus, daß sie durch eine Entwicklung nach Kugelfunktionen voneinander getrennt worden sind. Ist dagegen das Oberflächenfeld für jede Frequenz durch eine einzige elementare Kugelflächenfunktion zumindest näherungsweise gegeben, ist dies nicht notwendig und man kann $Q_n(\omega_m)$ aus dem beobachteten Feld an einem einzigen Ort ableiten. Für die Summe der äußeren und inneren Elementarpotentiale gilt dann in der Schreibweise von Gl.(3) und (4)

 $V(\mathbf{T},\mathbf{r},\theta,\lambda) = \mathbb{R}_{\mathbf{E}} \sum_{m} \{\varepsilon_{n}^{m} (\frac{\mathbf{r}}{\mathbf{R}_{\mathbf{E}}})^{n} + \iota_{n}^{m} (\frac{\mathbf{R}_{\mathbf{E}}}{\mathbf{r}})^{n} \} \mathbb{P}_{n}^{m}(\cos\theta) e^{imT}.$

Daraus ergibt sich für die komplexen Fourier-Amplituden der Feldkomponenten des Oberflächenfeldes $(r=R_E)$ in Ortszeit

$$\widetilde{B}_{\gamma}(\omega_{m}) = -\overline{z}_{n}^{m}(\omega_{m}) \frac{d\overline{P}_{n}^{m}}{d\overline{\varphi}} \quad mit \quad \overline{z}_{n}^{\ell} = \underline{e}_{n}^{\ell} + \iota_{n}^{\ell}$$

$$\operatorname{sin}^{\kappa} \widetilde{B}_{\lambda}(\omega_{m}) = -\operatorname{im} \overline{z}_{n}^{m}(\omega_{m}) \widetilde{P}_{n}^{m} \quad mit \quad \frac{\partial}{\partial\lambda} = \frac{\partial}{\partial\tau}$$

$$\widetilde{B}_{\gamma}(\omega_{m}) = \left\{ -n \ \underline{e}_{n}^{m}(\omega_{m}) + \left[n+n \right] \ \underline{c}_{n}^{m} \right\} \widetilde{P}_{n}^{m} .$$
(7)

$$C_{n}(\omega_{n}) = \frac{R_{E}}{n+1} - \frac{1 - \frac{n+1}{n} Q_{n}(\omega_{n})}{1 + Q_{n}(\omega_{n})}$$
(8)

eingeführt. Einsetzen in (T) ergibt

$$\widetilde{B}_{r} = -n(n+1) \frac{C_{n}}{R_{E}} \tau_{n}^{m} P_{n}^{m}$$
(9)

Die in Gl.(8) eingeführte Übertragungsfunktion, eine die Eindringtiefe charakterisierende Länge, hat eine direkte Beziehung zur Impedanz desjenigen Oberflächenfeldes, dessen magnetisches Potential durch Gl.(6) gegeben ist. Es gilt

$$E_{\theta} = -i\omega C_{n}(\omega_{n}) B_{\lambda} , \quad E_{\lambda} = i\omega C_{n}(\omega_{n}) B_{\theta} . \quad (10)$$

Zu beachten ist das asymptotische Verhalten von C_n. Ist sein Absolutwert der Eindringtiefe klein im Vergleich zu $R_{E}^{/(n+1)}$, so nähert sich C_n(ω_{n}) einem vom Grad n unabhängigen Grenzwert:

$$C_{n}(\omega_{n}) \neq C_{O}(\omega_{n}) \quad \text{für } |C_{n}| (n+1)/R_{E} \neq 0.$$
(11)

Der Index "O" soll anzeigen, daß i ω C_o die Impedanz quasi-homogener Felder über geschichteten Halbräumen ist, deren Wellenzahl im k-Bereich formal Null gesetzt wurde.

4. Bestimmung der Übertragungsfunktionen aus Beobachtungen

(1) Potential-Methode: Sie liefert die in Gl.(6) eingeführte Übertragungsfunktion $\textbf{Q}_{n}\left(\boldsymbol{\omega}_{m}\right)$. Der Vorteil dieser Methode besteht darin, daß die Entwicklung des Oberflächenfeldes nach Kugelfunktionen die Trennung der Potentiale äußeren und inneren Ursprungs ohne jede Hypothese erlaubt. Ihr Nachteil liegt in der notwendigen Einbeziehung der Radialkomponente \widetilde{B}_r . Diese ist aber von lokalen Anomalien des inneren Anteils, insbesondere den Küsten- und Inselanomalien, mehr betroffen als die Tangentialkomponenten \widetilde{B}_{θ} und \widetilde{B}_{λ} . Eine richtige Wiedergabe von \widetilde{B}_{μ} durch Kugelfunktionen würde also eine Entwicklung bis zu sehr hohen Graden und Ordnungen erfordern, was angesichts der verfügbaren Daten von etwa 100 weltweit verteilten Observatorien nicht möglich ist. Dies zwingt zur Einführung eines radial-symmetrischen Erdmodells, um so jeden "inneren" Potentialkoeffizienten ι_n^{ℓ} für sich auf einen "äußeren" Koeffizienten ε_n^{ℓ} gleichen Grades und gleicher Ordnung beziehen zu können.

Es zeigt sich, daß mit dieser Einschränkung für jede Frequenz jeweils nur die größten Koeffizienten mit n = m+1 und l = m zu widerspruchsfreien Q_n -Werten führen. Sie sind in Tabelle 1 nach

verschiedenen Analysen zusammengestellt. Alle Koeffizienten mit gleichem n müßten ja für eine vorgegebene Frequenz ω_m identische Q_n-Werte liefern. Auch die Verträglichkeit der Q_n unterschiedlicher Grade mit einem radial-symmetrischen Erd-modell läßt sich prüfen, indem man sie nach Gl.(8) in Eindringtiefen C_n umwandelt. Diese sollten für eine vorgegebene Frequenz näherungsweise unabhängig von n sein und dem asymptotischen Wert C_o entsprechen.

Beides ist in den besten verfügbaren Analysen auch nicht näherungsweise der Fall, wie dies am Beispiel der Malin'schen Analyse (1973) für die Frequenz ω_2 gezeigt wird. Malin hat ihr globales Oberflächenfeld durch eine Reihe mit 18 Entwicklungskoeffizienten dargestellt, die getrennt nach innerem und äußerem Anteil in seiner Tabelle A1 (S.586) unter p=2 zusammengestellt sind. Die Analyse wurde für S-Variationen in Weltzeit durchgeführt. Der jeweils erste Wert bezieht sich auf $P_n^2 \cos \ell \lambda$, der zweite auf $P_n^2 \sin \ell \lambda$.

'n	L	$\epsilon_n(\omega_1)$	$Q_n(\omega_2)$	$C_m(\omega_2)$ in hm
1	1	.117 - 2.207 2171482	.288 + .105; .096102;	997 - 601: - *:
2	1	062 + i. 036 037 + i.048	154 + 1.041 i .208 - 1.756 i	-
2	2	.019 + :.098 .154 + :.084	.866 + i.465 .155 - i.021	
3	1	.031 + i .079 .093 - i.071	. 307 - : .703 .330 - : 145	-
3	2	634 + i.009 .031 + i.555	.355 + i.112 .457 + i.124	601- 225 i 405 - 215 i
*.)	$ Q_n > \frac{n}{n+1}$	oder any [9_3	might Inden 0	and TI/2

- 18 -

3	3	077 + 2 .051	1.190 - i .126	-
		.127 + 6.033	020 + i .044	-
4	1	047 - i.027	392 - i. 143	-
		041 + 1.073	187 + i .552	-
*				
4	2	.058 + 1.023	374 + i . 248	-
		.009 = : .077	. 777 + 6.130	12 - 1771
4	3	. 003 - 6.031	.370 - i 1.158	3. .
		048 + i .00	604 - i .604	-

Wie schon bemerkt, erhält man sinnvolle Übertragungsfunktionen Q_n und C_n nur für l = 2 und n = 3, also für denjenigen Teil der S-Variationen, der eine reine Funktion der Ortszeit ist und dessen Quellen symmetrisch zum Äquator liegen (n-l:ungerade). In Malin's Analyse fehlen die Koeffizienten für l = 2 und n = 2+3 = 5, die vermutlich die zweitgrößten gewesen wären.

Die wesentliche Ursache dafür, daß sich für die übrigen, relativ kleinen Koeffizienten keine konsistenten Übertragungsfunktionen ergeben, ist vermutlich ihre zu ungenaue Bestimmung, die außerdem von der speziellen Lage der gewählten Observatorien abhängen könnte. Über den möglichen Einfluß von lateralen Leitfähigkeitsänderungen, insbesondere der Weltmeere, läßt sich aber aufgrund dieser Analyse nicht mehr sagen, als schon Price (1963) festgestellt hat: daß nämlich der innere Anteil von S-Variationen immer dann am größten ist, wenn sich die Zentren der äußeren Stromsysteme über dem Meer befinden. Doch ist dies eine von den zumeist festländischen Observatorien extrapolierte Aussage.

Insgesamt vermitteln die mit der Potentialmethode gewonnenen Ergebnisse den Eindruck, daß Entwicklungen nach einer steigenden Zahl von Kugelfunktionen nicht zu einer verbesserten Bestim-

- 19 -

mung der Übertragungsfunktionen führen. Vielmehr wird es darauf ankommen, die Zahl der zu bestimmenden Übertragungsfunktionen entscheidend zu reduzieren oder auf Entwicklungen nach Kugelfunktionen ganz zu verzichten, wie in der Z:H und Z:H' Methode, oder sie auf die Tangentialkomponenten zu beschränken, wie in der Z:Y Methode. Diese Methoden führen nicht auf globalgültige sondern auf lokale und regionale Übertragungsfunktionen. Sie beschränken so die Voraussetzung einer radial-symmetrischen Erde auf einen kleinen Ausschnitt, dessen laterale Ausdehnung durch den Betrag von $C_n(\omega_m)$ angegeben wird.

<u>Z:H Verfahren</u>: Es liefert die Eindringtiefe $C_{m+1}(\omega_m)$ unter der Annahme, daß S-Variationen eine reine Funktion der Ortszeit sind und daß die Breitenabhängigkeit ihre Fourier-Amplituden durch <u>eine</u> Kugelfunktion, nämlich durch $P_{m+1}^{m}(\cos\theta)$ darstellbar ist. Die Bestimmungsgleichungen für C_{m+1} aus den Radial- und Tangentialkomponenten in der Ko-Breite Θ ergeben sich aus (7) und (9) für die Frequenz ω_m zu

$$\widetilde{B}_{r} = \frac{C_{m+1}}{R_{E}} (m+1) (m+2) \frac{\sin\theta \cos\theta}{m\cos^{2}\theta - \sin^{2}\theta} \widetilde{B}_{\theta}$$

$$\widetilde{B}_{r} = \frac{C_{m+1}}{R_{E}} (m+1) (m+2) \sin\theta / im \cdot \widetilde{B}_{\lambda} ,$$
(12)

wobei man noch - um identische Ergebnisse mit \tilde{B}_{θ} und \tilde{B}_{λ} zu erhalten - besondere "Sq-effektive" Koordinaten einführen kann. Einzelheiten sind im Protokollband zum ersten Grafrath-Kolloquium zu finden (Schmucker, 1974), mit dieser Methode gewonnene Eindringtiefen in Tabelle 2.

Wenn auch dieses im Vergleich zur Potentialmethode einfache Verfahren stabile und konsistente Schätzwerte der Eindringtiefen für S-Variationen erbrachte, so erwies sich die Einbeziehung der Tangentialkomponenten an nur <u>einem</u> Ort als ungünstig, um eine "fehlerfreie" rechte Seite für eine Regressionsanalyse zur Bestimmung von C_n(ω_m) zu erhalten. Es wurden daher zwei neue Methoden entwickelt, bei denen die Eingabe-Variable auf der rechten Seite aus den Tangentialkomponenten an vielen Orten hervorgeht.

- 20 -

<u>Z:Y Verfahren:</u> Es liefert den asymptotischen Wert $C_o(\omega_m)$ der Übertragungsfunktionen $C_n(\omega_m)$. Die Beschränkung auf eine einzige Kugelfunktion wie bei der Z:H Methode entfällt, inden vorausgesetzt wird, daß für alle im äußeren Feld einer Frequenz enthaltenen Kugelfunktionen die Ungleichung $|C_n|(n+1)/R_{\rm E}^{<1}$ gilt. Schreibt man die Fourier-Amplitude des nichtseparierten Potentials in Ortszeit für ω_m und $r = R_{\rm E}$ als Summe von Kugelflächenfunktionen,

$$\widetilde{V}(\omega_{m}, R_{E}, \theta, \lambda) = R_{E} \sum_{n=m-1}^{M} Y_{n}(\omega_{m}, \theta, \lambda)$$
(13)

so gilt nach Gl.(3) und (4)

 $Y_{m-1} = \tau_{m-1}^{m-1} e^{-i\lambda} P_{m-1}^{m-1}$ $Y_{m} = \tau_{m}^{m-1} e^{-i\lambda} P_{m}^{m-1} + \tau_{m}^{m}$ $Y_{m+1} = \tau_{m+1}^{m-1} e^{-i\lambda} P_{m+1}^{m-1} + \tau_{m+1}^{m} P_{m+1}^{m} + \tau_{m+1}^{m+1} e^{i\lambda} P_{m+1}^{m+1}$

usw.

wenn τ_n^{l} wie in Gl.(7) die Summe der äußeren und inneren Koeffizienten darstellt. Die Gleichungen (7) und (9) erhalten mit (13) die erweiterte Form

$$\widetilde{B}_{\theta} = -\sum_{\substack{m-1 \\ m-1}}^{N} \frac{\partial Y_{n}}{\partial \theta} , \sin \theta \ \widetilde{B}_{\lambda} = -\sum_{\substack{m-1 \\ m-1}}^{N} \frac{\partial Y_{n}}{\partial \lambda}$$
$$\widetilde{B}_{r} = -\sum_{\substack{m-1 \\ m-1}}^{N} n(n+1) \ \frac{C_{n}}{R_{E}} Y_{n} .$$
(14)

Einsetzen von $C_o(\omega_m)$ für $C_n(\omega_m)$ als gemeinsamen, asymptotischen Wert der Übertragungsfunktionen für alle Gerade n ergibt die Grundgleichung des Z:Y Verfahrens:

$$\tilde{B}_{r}(\omega_{m},\theta,\lambda) = -\frac{C_{o}(\omega_{m})}{R_{E}} \sum_{n=m-1}^{M} n(n+1)Y_{n}(\omega_{m},\theta,\lambda).$$
(15)

Die Y_n sind dabei für den vorgegebenen Ort (θ, λ) aus (13) mit den nicht-separierten Koeffizienten τ_n^{ℓ} abzuleiten, die ihrerseits durch eine Kugelfunktionsentwicklung von \widetilde{B}_{θ} und \widetilde{B}_{λ} gewonnen worden sind. Die Notwendigkeit einer entsprechenden Entwicklung von \widetilde{B}_r entfällt. Die entscheidenden Schwächen der Potentialmethode (Kugelfunktionsentwicklung von B_r) und des Z:H Verfahrens (Beschränkung auf eine Kugelfunktion) werden vermieden.

<u>Z:H' oder Gradienten-Verfahren:</u> Es liefert wiederum den asymptotischen Wert $C_0(\omega_m)$ der Übertragungsfunktionen $C_n(\omega_m)$. Die Ausgangsgleichung erhält man, indem die Impedanz-Beziehungen (10) mit C_0 für C_n zur Berechnung von $\partial E_{\theta}/\partial \lambda$ und $\partial E_{\lambda}/\partial \theta$ in

$$-i\omega \tilde{B}_{r} = rot_{r} = \frac{1}{r \sin\theta} \left\{ \frac{\partial}{\partial \theta} (\sin\theta E_{\lambda}) - \frac{\partial E_{\theta}}{\partial \theta} \right\}$$

benutzt werden, wobei $\mathrm{C}_{_{\mathrm{O}}}$ als Konstante behandelt wird. Es ergibt sich

$$\tilde{B}_{r} = -\frac{C_{o}(\omega_{m})}{R_{E}} \left\{ \frac{\partial B_{\theta}}{\partial \theta} + \cot \theta B_{\theta} + \frac{\partial \tilde{B}_{\lambda}}{\partial \lambda} + \operatorname{im} \tilde{B}_{\lambda} \right\}, \qquad (16)$$

wenn man bei der Differentation nach λ den Zeitfaktor exp(imT) = exp(i{mt + m λ }) der Fourier-Amplituden in Ortszeit berücksichtigt. Die Gradienten der Tangentialkomponenten werden durch Differenzieren von Polynomdarstellungen für \tilde{B}_{θ} und \tilde{B}_{λ} in einem ausgewählten Gebiet gewonnen,

$$\tilde{B}_{\theta}(\omega_{m},\theta,\lambda) = a_{0} + a_{1}\theta + a_{2}\lambda + a_{3}\theta^{2} + a_{4}\lambda^{2} + a_{5}\theta\lambda$$

$$\begin{split} \sin\theta ~ \tilde{B}_{\lambda} \left(\omega_{m}, \theta, \lambda \right) &= b_{0} + b_{1}\theta + b_{2}\lambda + b_{3}\theta^{2} + b_{4}\lambda^{2} + b_{5} \theta\lambda , \\ \\ \text{also aus} ~ \frac{\partial \tilde{B}_{\theta}}{\partial \theta} &= a_{1} + 2a_{3}\theta + a_{5}\lambda \end{split}$$

$$\frac{\partial B_{\lambda}}{\partial \lambda} = b_2 + 2b_4 \lambda + b_5 \theta$$

Dabei ist wegen rot_r <u>B</u> = 0 die Beziehung $\partial (\sin \theta B_{\lambda}) / \partial \theta = \partial B_{\theta} / \partial \lambda$ zu beachten, die Gleichheit von b₁ und a₂, 2b₃ und a₅, b₅ und 2a₄ verlangt.

- 22 -

5. Ergebnisse

Tabelle 1 enthält die nach der Potential-Methode bestimmten Übertragungsfunktionen $Q_n(\omega_m)$ mit n = m+1. Chapman (1919) hat seine Analyse der äquinoktialen Monate 1902 und 1905 mit 26 Observatorien in Ortszeit durchgeführt, Malin (1973) und Winch (1981) mit 100 und 130 Observatorien in Weltzeit mit den genannten Nachteilen. Malin benutzte als Eingabedaten die Fourier-Amplituden der mittleren S-Variationen, die von Gupta und Chapman (1968) für das IGJ 1957/58 berechnet wurden, Winch von ihm selbst berechnete Fourier-Amplituden für 1964/65. Beide haben alle Tage des Jahres mit Ausnahme der fünf D-Tage jedes Monats einbezogen.

Fainbergs (1983) Analyse beruht gleichfalls auf den S-Variationen von 1958 und stützt sich auf die Beobachtungen an 75 Observatorien. Einzelheiten seiner Analyse sind nicht bekannt. Sie erfolgte iterativ, indem schrittweise Observatorien mit anomalen S-Variationen ausgeschieden werden.

In der letzten Spalte sind zum Vergleich nach dem Z:Y-Verfahren bestimmte Übertragungsfunktionen für europäische Observatorien angegeben. Die C_o(ω_m)-Werte wurden dazu nach Gl.(8) in Q_n(ω_m)-Werte mit n = m+1 umgerechnet:

$$Q_{n} = \frac{n}{n+1} \frac{1 - (n+1)C_{o}/R_{E}}{1 + n C_{o}/R_{E}}$$

Die angegebenen Fehler beziehen sich jeweils auf den Betrag von Q_n . Die vergleichsweise großen Fehler bei den von Winch bestimmten Übertragungsfunktionen sind dadurch zu erklären, daß er Daten aus einem Sonnenflecken-Minimum mit entsprechend reduzierten S-Variationen analysiert hat.

Die Zahl der Kugelfunktionen, die in den einzelnen Analysen zur Darstellung des globalen Feldes benutzt werden, ist durchaus unterschiedlich. Chapman beschränkte sich auf die Anpassung eines einzelnen Terms für jede Frequenz, Malin und Winch verwendeten bis zu zwanzig Termen pro Frequenz, die Z:Y Analyse bis zu zehn Terme. Bedenkt man diese großen Unterschiede in der Durchführung der Analyse, die Verschiedenheit der Ausgangsdaten, der benutzten Observatorien und der Bestimmungsmethoden, so ist die Übereinstimmung der Q-Werte in Tabelle 1 innerhalb der Fehlergrenzen, soweit sie bekannt sind, bemerkenswert.

Sie zeigt, daß die Grundannahme einer lateral-homogenen Erde zutrifft, zumindest für die Kontinente, und daß der innere Anteil von S-Variationen hier eine deutliche Phasenverschiebung gegenüber dem äußeren Anteil aufweist. Dies bedeutet, daß der Erdmantel auf S-Variationen keineswegs wie ein idealer Leiter wirkt wie im Fall von Dst Variationen, wenn auch für die Grundperiode (m=1) eine deutliche Reduzierung der Phase erkennbar ist. Die mittlere Leitfähigkeit des Mantels ist vielmehr aus den Phasen von Q bestimmbar und liegt zwischen 30 und 50 Ω m, wie noch gezeigt wird.

Gewisse Q-Werte fallen heraus. So sind etwa für m=4 die Realteile bei Chapman und Fainberg zu klein, bei Winch zu groß. Für m=3 ist die Übereinstimmung am besten (bis auf Winchs Realteil), für m=2 ist bei Fainberg der Imaginärteil und beim Z:Y Verfahren der Realteil zu klein. Bei der Grundperiode ist der Imaginärteil und damit die Phase von Q relativ unsicher.

Tabelle 2 enthält Bestimmungen der komplexen Eindringtiefen $C_n(\omega_m)$ oder ihres asymptotischen Wertes $C_0(\omega_m)$ nach jedem der drei in Abschnitt 4 genannten Verfahren. Die jeweilige Ausgangsgleichung (12), (15) und (16) wurde dabei im Sinne einer univariaten Regressionsanalyse mit den mittleren Fourier-Amplituden von S-Variationen an zwölf europäischen Stationen ausgewertet, wobei Observatorien in weniger als 55° Breite und in möglichst großer Entfernung zum Atlantik ausgewählt wurden: Die örtlichen Vertikalkomponenten $Z(= -B_r)$ wurden als fehlerbehaftete Variable der linken Seite behandelt, die Fourier-Amplituden von $H(B_{\theta}, B_{\lambda})$, Y und H' als fehlerfreie rechte Seiten. Die verwandten Fourier-Amplituden entstammen, wie in Malins Analyse, den Gupta-Chapman Tabellen (1968), beziehen sich also auf die mittleren S-Variationen des IGJ 1957/58.

Bei der Entwicklung des Tangentialfeldes nach Kugelfunktionen und Polynomen wurden sechs weitere Observatorien hinzugenommen, die zwar anomale Z-Variationen aber offensichtlich wenig gestörte H-Variationen besitzen. Zum Vergleich enthält Tabelle 2 nach Gl.(8) umgerechnete Q_n -Werte aus Malins Analyse. Somit enthält Tabelle 2 mit vier unterschiedlichen Methoden aus dem gleichen Datensatz gewonnene C-Werte.Die Fehler beziehen sich wieder auf den Betrag.

Signifikant abweichende Werte liefert nur die Z:H Methode. Auffallend ist insbesondere ihr großer Imaginärteil für m=2, der sich als Artefakt dieses zu sehr vereinfachten Bestimmungsverfahrens erweist. Sonst liegt die Übereinstimmung im Bereich der Fehlergrenzen. Insbesondere passen die nach dem Z:Y und nach dem Z:H' Verfahren gewonnenen Co-Werte gut zusammen. Für regionale Untersuchungen ist daher eine Entwicklung nach Kugelfunktionen nicht notwendig und das Gradientenverfahren ausreichend.

Tabelle 2 zeigt, daß die Eindringtiefen $z_o(\omega_m) = \operatorname{Re}\{C_o(\omega_m)\}$ von 350 km für die vierte Oberschwingung m=4 bis zu über 700 km für die Grundschwingung m=1 fortschreitet. Abb.1 stellt die zugehörigen scheinbaren spez. Widestände und Phasen zusammen, Tabelle 3 enthält sie speziell für das Z:Y und Potentialverfahren.

Bei den Darstellungen ist eine mehr oder weniger stetige Abnahme des scheinbaren spez. Widerstandes ρ_a von etwa 65 Ω m auf rund 50 Ω m mit wachsender Periode zu entnehmen, was gut zu dem beobachteten Phasenwinkel um 60 Grd. paßt. In der Nähe der Grundperiode, also in einer Tiefe zwischen 700 und 800 km, wird der Abfall von ρ_a stärker und die Phase rückt entsprechend näher an ihren asymptotischen Wert von 90 Grad heran.

Eine gewisse Unsicherheit besteht für die Periodenabhängigkeit der Phase. Nach dem Potentialverfahren nimmt sie monoton mit zunehmender Periode ab, entsprechend einer monotonen Abnahme des in-situ Widerstandes mit der Tiefe. Das Z:Y Verfahren ergibt ein schwach ausgeprägtes Phasenminimum für m=3, also für eine Periode von 8 Stunden und eine Eindringtiefe von z * = 400km. Wäre es signifikant, so würde es bedeuten, daß der in-situ Widerstand in dieser Tiefe ein Maximum durchläuft.

- 25 -

6. Die Strukturierung des kontinentalen Mantels bis 1000 km Tiefe

In Abb.2 und Tabelle 4 werden die Eindringtiefen z^{\star} , scheinbaren Widerstände und Phasen der Impedanz gemeinsam für DP-Variationen, S-Variationen und Dst-Variationen dargestellt. Sie ergeben ein fortlaufendes Tiefenprofil von $z^{\star} = 110$ km für eine Periode von 15 Minuten bis 1000 km für eine Periode von 25 Tagen. Die Herkunft der Daten ist aber sehr unterschiedlich. Die C_o-Werte für DP-Variationen sind aus einer Anwendung des Gradientenverfahrens von Jones (1982) auf PEJ Felder in Skandinavien und sind hier nur teilweise wiedergegeben. Die C_o-Werte für S-Variationen entstammen der hier beschriebenen Analyse nach dem Z:Y-Verfahren mit europäischen Observatorien, die C_o-Werte für Dst-Variationen einer früheren Analyse nach dem Z:Y-Verfahren mit weltweit verteilten Observatorien (Schmucker, 1979). In jedem Fall betreffen die tabellierten Werte mehr die Mantelstruktur unter Kontinenten als unter den Ozeanen.

Obwohl die räumliche Struktur der induzierenden Felder sehr unterschiedlich ist und diese bei magnetischen (im Gegensatz zu magnetotellurischen) Verfahren voll in die Ableitung der Übertragungsfunktionen eingeht, passen die drei Segmente des scheinbaren Widerstandsprofils gut zusammen. Nur bei den kürzesten Dst-Perioden, gewonnen aus einer Analyse von Einzelstürmen mit einer unsicheren Abtrennung der S-Variationen, ergeben sich gewisse Unstimmigkeiten mit dem C_o-Wert der Grundperiode von S-Variationen. Außerdem fehlen in dem Übergangsbereich - zwischen der kürzesten S-Periode und der längsten DF-Periode -Bestimmungen von C_o, die den zu fordernden Widerstandsanstieg zwischen z^{*} = 210 km und z^{*} = 365 km belegen könnten.

Schließt man einen Einfluß systematischer Fehler aus, interpretiert man also die in Abb.2 dargestellten $\rho^*(z^*)$ -Wertepaare innerhalb ihrer statistischen Fehler (95% Vertrauensbereich für DP, jeweils 68% für S und Dst), so ergibt sich folgende sichtbare Strukturierung des kontinentalen Mantels: Offensichtlich ist folgende Zweiteilung: Bis $z^* = 600$ km liegt ρ^* oberhalb von 10 Ω m, ab $z^* = 800$ km unter 1 Ω m. Der Übergang zwischen beiden Bereichen ist gut belegt und muß sehr steil verlaufen. Hinzu kommen zwei Details:

- 26 -

(1) Die Phase scheint im Dst-Segment bei einer Periode von 8 Tagen ein Maximum zu durchlaufen, welches allerdings fast in den Fehlergrenzen verschwindet. Außerdem ist die Zunahme der Eindringtiefe gerade in diesem Periodenbereich auffallend gering. Beides deutet darauf hin, daß der Übergang von dem hochohmigen oberen Mantel zu dem gutleitenden unteren Mantel über eine noch besser leitende dünne Grenzschicht in 800-900 km Tiefe verläuft.

(2) Die schwach signifikante Abnahme in ρ^* von 48 Ω m für die dritte auf 34 Ω m für die vierte S-Oberschwingung könnte sich zu kürzeren Perioden hin fortsetzen und so den Anschluß zu den DP-Werten herstellen, die mit $\rho^* = 10 \ \Omega$ m in 210 km Tiefe beginnen. Es würde ein Widerstandsminimum in der genannten Tiefe anzeigen mit einem gutbelegten Widerstandsanstieg zu kürzeren Perioden und geringeren Eindringtiefen hin. Doch es fehlt ein überzeugender Anschluß der beiden Segmente. Außerdem ist das ρ^* -Minimum dort, wo dieser Anschluß mit magnetotellurischen Sondierungen hergestellt wird, nicht nachweisbar. Dies gilt etwa für die in dem Beitrag von E. Steveling zu diesem Band beschriebene Sondierung bei Göttingen.

Abb.3 überträgt diese aus dem $\rho^{*}(z^{*})$ -Profil erschlossene Strukturierung auf Mehrschichtenmodelle, wie sie sich aus der Anwendung des Ψ -Algorithmus auf die in Tabelle 4 enthaltenen C₀-Werte ergeben. Die Modellparameter sind in Tabelle 5 zusammengestellt. Der hier angegebene Anpassungsparameter ε bezieht sich auf den rms Anpassungsfehler der logarithmischen Übertragungsfunktion

 $y(\omega_{m}) = \ln \{i\omega_{m}\mu_{0}C_{0}(\omega_{m})^{2}/\rho_{0}\} = \ln \rho_{a}/\rho_{0} + 2i(\frac{\pi}{4} - \phi)$,

gibt also ungefähr den relativen Anpassungsfehler von $\rho_{\rm a}$ an oder den Anpassungsfehler der Phase in Bogenmaß.

Die Zahl der Schichten ist so gewählt, daß ε dem mittleren relativen Fehler der eingegebenen ρ_a -Werte entspricht. Die errechneten Schichtwidestände ρ_m sind das Ergebnis einer reinen Ausgleichsrechnung <u>ohne</u> Glättung über Modellparameter bei der Lösung der Normalgleichungen. Die angegebenen Schichtdicken d_m sind als reine Rechengrößen aus den Schichtparametern d_o= $\sqrt{\rho_o}/\rho_m$ d_m bester Anpassung abgeleitet worden ($\rho_o = 1$ Ωm).

- 27 -

Das Ergebnis der Modellrechnung ist folgendes: Ohne Hinzunahme der DP-Werte genügt ein 3-Schichtenmodell mit monoton abnehmenden Widerständen zur Interpretation der S und Dst Daten innerhalb ihrer Fehlergrenzen. Der gute Leiter in 200-400 km Tiefe erweist sich in einem 4-Schichtenmodell als gerade noch auflösbar. Mit den DP-Werten erhält man die erwartete Strukturierung im oberen Mantel mit einem guten Leiter in 200-300 km Tiefe.

Literatur:

- Benkova, N.P.: Spherical harmonic analysis of the Sq variations, May-August 1933. Terr. Magn. Atmosph. Elec. 45, 425, 1940
- Chapman, S.: The solar and lunar diurnal variations. Phil. Trans. Roy. Soc. London, A 218, 1, 1919
- Fainberg, E.B.: Global geomagnetic sounding. Preprint No. 50 Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation IZMIRAN, Academy of Sciences, Moskau, 1983
- <u>Gupta, J.C. and S. Chapman</u>: Manual of the coefficients of the first four harmonics of the solar and lunar daily variations computed from IGY/C and certain other data. Manuscript 68-110. National Center of Atmospheric Research, Boulder/ Colorado, 1968
- Jones, A.G.: Geomagnetic induction studies in Scandinavia. J. Geophys. <u>48</u>, 181, 1980
- Malin, S.R.C.: Worldwide distribution of geomagnetic tides. Phil. Trans. Roy. Soc. London, A 274, 551, 1973
- Price, A.T. and G.A. Wilkins: New method for the analysis of geomagnetic fields and their application to the Sq field of 1932-1933. Philos. Trans. R. Soc. Lond., Ser.A, 256,31-98,1963
- Schmucker, U.: Erdmagnetische Tiefensondierung mit langperiodischen Variationen. Protokoll Kolloquium "Erdmagnetische Tiefensondierung", Grafrath (Hrsgeb. A. Berktold), Institut für Geophysik, Univ. München, 313, 1974

- Schmucker, U.: Erdmagnetische Variationen und die elektrische Leitfähigkeit in tieferen Schichten der Erde. Sitzungsbericht und Mitteilungen Braunschweigische Wiss. Gesellschaft, Sonderheft 4, 45, 1979
- <u>Winch, D.F.</u>: Spherical harmonic analysis of geomagnetic tides, 1964-1965. Phil. Trans. Roy. Soc. London A <u>303</u>, 1, 1981

<u>Abb.1</u>: Scheinbare Widerstände ρ_a und Phasen ϕ der Impedanz für die in Tabelle 1 zusammengestellten Übertragungsfunktionen Q_n für S-Variationen. Sie werden ergänzt durch entsprechende Schätzwerte aus den Analysen von Dst und DP Variationen in Skandinavien (s. Text).

30 -

55⁰ Breite.

Tabelle 1

Übertragungsfunktion $Q_n(\omega_m)$ zwischen Potentialkoeffizienten des inneren und äußeren Anteils für S-Variationen in Ortszeit und Kugelfunktion P_{m+1}^m

(Werte x 100)

	Chapman	Malin	Winch	Fainberg	Ζ:Υ
m=4	36+18i	42+22i ±15	51+26i ±13	32+ 5i	40+18i ±3
3	38+15i	42+16i ± 7	53+14i ± 5	39+15i	40+21i ±2
2	44+14i	41+12i ± 6	42+19i ± 5	40+ 3i	36+16i ±1
1	34+ 9i	37+ Oi ± 6	39- 1i ± 5	34+ 9i	35+ 5i ±1

Tabelle 2

<u>übertragungsfunktionen</u> $C_n(\omega_m)$ <u>und</u> $C_o(\omega_m)$ <u>für regionale Radial-</u> komponente <u>B</u> von S-Variationen in Europa. Einheit: 1 km

	Z:H	Z:Y	Z:H'	Q -Malin n
m=4	290-260i ±30	365-215i ±50	0 350-230i ±30	330-250i ±110
3	330-365i ±30	405-295i ±3	5 400-280i ±30	400-230i ± 80
2	495-470i ±35	565-320i ±2	5 575-280i ±30	490-225i ± 90
1	575-275i ±60	750-155i ±3	5 730-100i ±80	685- Oi ±175

			×				
	Q _n -	Malin			co	- Z:Y	
	ρ _a	Q	φ.		ρ _a	ρ	φ
m=4	63±34	45±25	53±15		66±15	34±8	60±7
3	59±20	29± 9	60± 9		69±10	48±7	54±4
2	53±17	19± 6	65± 9		77± 6	37±3	60±2
1	43±22	O±	90±15		54± 5	4.4±0.4	78±3
		ρ _a	=	μ ₀ C ₀ ²	2		
		φ	= 90	Grd + a	rg {Co	}	
		ρ	$= \begin{cases} 2\\ \frac{1}{2} \end{cases}$	$a^{\cos^2\phi}$ ρ_a/\sin^2	φ.	$\phi \geq \pi/4$ $\phi < \pi/4$	

Т	ab	e]	1	e	3

<u>Scheinbare spez. Widerstände und Phasen der Impedanz für</u> <u>S-Variationen. Einheiten 1 Ωm, 1 Grad</u>

T	al	be	11	e	5
-			_	-	-

Modelle zur Interpretation der Übertragungsfunktionen in Tabelle 4.Einheiten: 1 km, 1 Ωm Daten S,Dst(9) S,Dst(9) DP,S,Dst(14) Schichtparameter do 60.0 27.5 14.0 Mittlerer Datenfehler dy 0.120 0.120 0.154 Anpassungsfehler ϵ 0.134 0.126 0.192 Schichtwiderm=1 71±7 112±46 173±28 stände p_m 2 16±4 15±18 4.0±1.8 0.42±0.10 3 158 ± 94 1380 ± 502 4 0.37±0.10 0.38±0.08

Schichtdicke: $d_m = d_0 \sqrt{\rho_m / \rho_0}$ mit $\rho_0 = 1 \Omega m$

Tabelle 4

Eindringtiefen $C_{o}(\omega_{m})$, scheinbarer spez. Widerstände und							
Pha	asen der Impeda	nz für DP-Variat	ionen, S-V	ariationer	und		
Ds	t-Variationen.	Einheiten 1 km,	1 Ωm, 1 G	rad			
		c _o	Pa	* р	φ		
	0.25	110- 65i ±15	146±39	72±19	60± 8		
	0.41	140- 60i ±30	122±48	42±17	65±11		
	0.69	160- 60i ±22	96±24	23± 6	70± 7		
DP	1.14	180- 65i ±30	70±22	16± 5	70± 9		
	2.28	210- 70i ±40	46±17	10± 4	71±11		
		-0					
	6	365-215i ±50	66±15	34± 8	60± 7		
c	8	405-295i ±35	69±10	48± 7	54± 4		
5	12	565-320i ±25	77± 6	37± 3	60± 2		
	24	750-155i ±35	54± 5	4.4±0.4	78± 3		
	38	690-150i ±40	28± 3	2.6±0.3	77.7±3.2		
Dst	64	780-160i ±40	22± 2	1.8±0.2	78.4±2.9		
	192 (8 Tge)	860-120i ±	8.6±0.8	0.3±0.03	82.0±2.6		
	300 (12.5 Tge)	900-200i ±	6.2±1.1	0.6±0.1	77.5±5.C		
	600 (25 Tge)	1020-290i ±130	4.1±1.0	0.6±0.2	74.1±7.0		

- 33 -